澳门凯旋门官方网站

因为澳门凯旋门官网充满了多种多样的游戏,所以澳门凯旋门官网被评为世界高科技高成长的娱乐平台,享受你一定会有很大的收获的,因为从来都不掉线。

真的来了,智能家居网络的建设能否引爆接入终

图片 1

2、通过引入新的体系结构(如超密集小区结构等)和更加深度的智能化能力将整个系统的吞吐率提高25倍左右;

随着移动互联网技术的突飞猛进,智能家居发展逐渐进入产品化阶段。然而,现有市面上的家居设备大都无法直接连接到控制终端,无法给用户带来较好的使用体验。为了改变这一现状, 一体化智能家居系统框架概念应运而生。其不仅能够让现有家居设备能够便利地连接到控制终端,同时还能够在控制终端上设计用户行为模式,根据用户使用的历史数据不断优化模型,最后再结合当前的环境场景自动调整家居设备的参数。换一句话说,借助一体化智能家居系统,智能家居不仅更易用,同时还具备了“学习”能力,可持续提升用户体验。

智能家居呼唤“一体化”

图片 2

1、通过引入新的无线传输技术将资源利用率在4G的基础上提高10倍以上;

系统的“智能”意味着中控服务器智能化。中控服务器除了采集相应的环境数据(包括智能家居设备数据和室内环境的温度、湿度、光照和时间等参数)、记录用户操作行为外,还需要对用户的行为进行建模,设计出一套可以预测用户行为的模型,模型的输入主要是环境数据和用户操作。模型通过监督式的方式进行参数训练,当用户数据采集到足够的量,训练的模型就可以对用户的行为进行预测,从而自动调整智能家居设备参数。同时,模型还要能够接受用户的反馈,通过反馈机制能够实时修正模型的参数。

构建一体化智能家居系统需要解决几个关键问题:如何让现有设备连接控制系统,如何让系统变得更加“智能”,如何设计智能家居系统前端,如何实现个性化设计?

目前,智能插座、灵活网关、温湿度传感器、高清摄像机、万能遥控器、自控窗帘、智慧情景开光、空气净化器、人体运动传感器、应急报警装置、人脸识别门锁等新型装置已开始进入千家万户,而上述装置中控制信息的上下行传输都需要接入终端的参与,至于智能家居网络的建设是否会引爆接入终端的发展,让我们拭目以待吧~

4G包括TD-Lte和FDD-LTE两种制式,是集3G与WLAN于一体,并能够快速传输数据、高质量、音频、视频和图像.4G能够以100Mbps以上的速度下载,并能够满足几乎所有用户对于无线服务的要求。

智能家居呼唤“一体化”

从结构上看,一体化智能家居系统需要一个中控服务器来负责连接所有家庭设备。设备可以通过有线或无线的方式连接到中控服务器。针对已装修好的室内,一般采用无线的方式比较便捷。为了尽可能多地覆盖市面上的产品,中控服务器支持包括WiFi、蓝牙以及ZigBee等主流的无线传输协议。在设备端,由于大部分的家庭设备不存在无线传输模块,为了使设备能够便捷地连接到中控服务器,需要设计一套插件,可以方便地让设备接入中控,且能够被控制。与此同时,还需要定义出一套接口标准,以解决设备繁多、无法统一连接的问题。

智能家居网络(Smart home network)是以室内接入网络为平台,利用传输技术、接入技术、安防技术、自动控制技术、视音频处理技术将智能生活光电设施集成搭建的支持用户各类智慧应用的网络。毫无疑问,智能家居网络的发展将提升我们生活的便利性、舒适性、环保性和安全性,同时也促使现有各类室内接入终端新应用的爆炸式发展。

1G主要解决语音通信的问题;2G可支持窄带的分组数据通信,最高理论速率为236kbps;3G在2G的基础上,发展了诸如图像、音乐、视频流的高带宽多媒体通信;4G是专为移动互联网而设计的通信技术,从网速、容量、稳定性上都有极大的提升;

现有设备接入控制系统

图片 3

从支持广泛用户接入的角度考虑,网状网拓扑结构是一种理想的网络接入设计模式。采用网状网架构,不仅能快速方便地添加新用户智能终端,而且可以迅速传输上下行接入信息。然而,因为接入信息必须从一个节点跳转到下一个节点,如果多接入节点同时处于活动状态,接入带宽就会急剧下降,我们设计智能家居网络时必须考虑这一点。实际应用中,最好结合用户使用的AP连接方式,让用户在享用智能家居网络的同时不受带宽的限制,确保智能设备彼此间互联互通,从而配合用户的使用习惯形成最佳的接入解决方案。

最典型的应用场景就是AR/VR,该应用对带宽的需求是巨大的,需要大量的数据传输、存储和计算功能,超高体验的游戏和建模、实时渲染和下载以及需要高达100Mbps至9.4Gbps的大带宽,当前主要用在游戏、广告等领域。

满足用户个性化需求

系统需更加“智能”

目前,需要建设的智能家居网络集中在家庭室内范围中,该网络将用户信息接入各类智能终端(包含家电、照明灯具、电脑、手机等)并和广域网连接。智能家居网络与传统办公网络相比,增加了很多支持传感器和高速接入应用的光电设备,因此包含的技术标准错综复杂。随着物联网、云计算和大数据等新型技术的飞速发展,多种类型的有线及无线模组、智能传输和接入设备、软件App、云服务器终端等也逐步进入智能家居网络。

“5G”,真的来了。

智能家居的美好愿景正在吸引家电厂商、设备厂商、软件厂商、互联网企业等各方角逐其中。在各家竞相推出智能家居产品和解决方案的今天,人们也发现了一个事实——虽然智能家居是不可阻挡的趋势,但是智能家居的技术仍然不够完善,智能家居系统亟待一体化。对于整个业界而言,只有让智能家居产品更加丰富,同时尽快统一标准,实现设备之间的互联互通,以及让智能家居系统具备“学习”能力,才有可能给用户带来更好的体验,从而推动整个市场的发展。

为了能够实现对所有家居设备的自动控制,中控服务器需要对不同类型的智能家居设备进行建模。但是模型的参数需要同时考虑到不同设备之间的影响。比如,控制灯光亮度的模型需要考虑到天气、环境、外界光照强度的综合影响。如果是晴朗的夏天,为了降温,空调制冷需要开启。同时为了省电,窗帘会被拉上。因此,灯控的模型需要综合考虑到这些情况,在白天且窗帘被拉上的时候打开灯光。

超密集网络能够改善网络覆盖,大幅度提升系统容量,并且对业务进行分流,具有更灵活的网络部署和更高效的频率复用。未来,面向高频段大带宽,将采用更加密集的网络方案,部署小小区/扇区将高达100个以上。

系统需更加“智能”

系统的“智能”意味着中控服务器智能化。中控服务器除了采集相应的环境数据(包括智能家居设备数据和室内环境的温度、湿度、光照和时间等参数)、记录用户操作行为外,还需要对用户的行为进行建模,设计出一套可以预测用户行为的模型,模型的输入主要是环境数据和用户操作。模型通过监督式的方式进行参数训练,当用户数据采集到足够的量,训练的模型就可以对用户的行为进行预测,从而自动调整智能家居设备参数。同时,模型还要能够接受用户的反馈,通过反馈机制能够实时修正模型的参数。

5G的意义

智能家居概念早在上世纪90年代就有雏形出现,但是当时整个行业还处在蛮荒阶段,概念还在探索,产品定位很是模糊,同时技术支撑也不足。进入2000年后,智能家居发展有了一定起色,但是还是处在光有概念没有市场的阶段。直到近几年,伴随着移动互联网、无线传感器等技术的革新和产品化的深入,以及人们对科技化生活需求的增长,智能家居渐渐不再只是概念,越来越多的产品和应用开始落地,并且人们也在进一步探索如何让智能家居更加“智能”,拥有更优的使用体验,以期得到大规模的普及。

综上所述,一体化智能家居系统能够通过简单的改动,如在现有设备上增加插件的方式将这些非智能设备接入智能家居中控系统中。同时,用户可以通过移动端应用或者Web应用访问中控服务器,对智能家居环境进行调控。并且中控服务器可以通过和用户试用的移动设备进行信息交互,获取用户当前信息。在获取了用户、智能家居设备以及周围环境的信息后,该系统还具备一定的学习能力,通过机器学习的算法,针对用户行为特征、环境、设备参数设计一套模型。在一体化智能家居系统的支撑下,智能家居应用将变得更加方便、易用,大幅提升人们的体验,为智能家居的普及奠定坚实的基础。

全双工技术能够突破FDD和TDD方式的频谱资源使用限制,使得频谱资源的使用更加灵活。然而,全双工技术需要具备极高的干扰消除能力,这对干扰消除技术提出了极大的挑战,同时还存在相邻小区同频干扰问题。在多天线及组网场景下,全双工技术的应用难度更大。

一体化智能家居系统将提供两套前端:Web版和移动版,同时支持内网和互联网访问。此外,整个系统需要有一定的智能,主要体现在系统能够自动“学习”用户的需求,从而自动地对设备的配置进行调整。

随着移动互联网技术的突飞猛进,智能家居发展逐渐进入产品化阶段。然而,现有市面上的家居设备大都无法直接连接到控制终端,无法给用户带来较好的使用体验。为了改变这一现状, 一体化智能家居系统框架概念应运而生。其不仅能够让现有家居设备能够便利地连接到控制终端,同时还能够在控制终端上设计用户行为模式,根据用户使用的历史数据不断优化模型,最后再结合当前的环境场景自动调整家居设备的参数。换一句话说,借助一体化智能家居系统,智能家居不仅更易用,同时还具备了“学习”能力,可持续提升用户体验。

智慧能源

现有智能家居设备主要有以下几个类别:照明设备、温控设备和家用电器。针对照明设备,只需要在设备连接电源处设计一个转接头。转接头包含无线通信模块,能够接收来自中控服务器的控制信号,调整电流大小,达到控制照明设备开关、光照强度等功能;同时可以发送当前设备的基本数据到中控服务器。

满足用户个性化需求

图片 4

让现有设备接入控制系统,意味着需要针对现有的非智能设备设计一套插件,让设备能够被控制。同时,对智能设备需要定义一套接口标准,达到统一管理的目的。

一体化智能家居系统将提供两套前端:Web版和移动版,同时支持内网和互联网访问。此外,整个系统需要有一定的智能,主要体现在系统能够自动“学习”用户的需求,从而自动地对设备的配置进行调整。

相对于4G网络,由于采用了“自包含集成子帧”、可伸缩传输时间间隔等新技术,传输延迟显著降低,最低可低至1ms,同时可靠性远远强于4G,因此该应用场景可以用在那些对网络时延很敏感以及对数据传输可靠性很高的领域,比如车辆网、远程医疗诊断(实时传输、超低时延)、无人机以及智慧能源等。

如何构建一体化智能家居系统

必不可少的前端设计

关键技术五:密集网络

针对温控设备有两种改造方案,第一,修改温控设备的开关控制板,加入无线通信以及控制模块,可以对控制板上的功能进行控制。这种改造方案主要针对没有无线遥控器的中央空调。第二,针对一般的空调设备,可以设计一个带有红外的无线控制装置,对准需要控制的设备的红外发射口。针对家用电器,由于设备多样性及复杂性,简单加入一套插件并不能获得所有功能的控制权限,想要有效解决家用电器的网络接入问题,需要和产品生产厂家合作完成。

一体化智能家居系统就是在这一背景下出现的。一体化智能家居系统框架将当前智能家居的最新技术和移动互联网技术相结合,目的是让家庭设备连接起来,使得使用者能够更方便地控制家庭设备。

第1代移动通信系统是模拟式通信系统,模拟式是代表在无线传输采用模拟式的FM调制,将介于300Hz到3400Hz的语音转换到高频的载波频率MHz上。

必不可少的前端设计

智能家居系统的前端采用当前流行的B/S架构。除了传统的Web控制前端外,还加入了移动前端。为了适配iOS和Andriod两大系统,可以用当前流行的HTML5来设计App。HTML5的好处是一份代码可以用于两种不同的移动设备操作系统,但是有些iOS上独有的特性无法体现。由于中控服务器需要能够支持外网接入,而当前家庭的网络接入都是以动态IP分配来实现,动态分配的IP并不能有效作为对外的服务器IP。针对这样的情况,可以考虑试用当前比较流行的云虚拟机来作为中控服务器和移动设备的连接桥梁。目前,国内主流的云虚拟机提供商,如阿里云就能够提供价格合理的云虚拟机服务。

图片 5

除了统一化的智能家居框架设计外,该框架还必须支持用户自定义设定。用户可以按照自己的需求设定中控服务器的配置参数,如配置各种智能家居设备启动、关闭的判断条件。同时还可以保存不同的环境配置,如节能模式、高效模式等,能够实现在需求变化的时候自由切换,同时用户还可以将自己的配置分享到互联网上。

除了统一化的智能家居框架设计外,该框架还必须支持用户自定义设定。用户可以按照自己的需求设定中控服务器的配置参数,如配置各种智能家居设备启动、关闭的判断条件。同时还可以保存不同的环境配置,如节能模式、高效模式等,能够实现在需求变化的时候自由切换,同时用户还可以将自己的配置分享到互联网上。

第二代移动通信系统

一体化智能家居系统就是在这一背景下出现的。一体化智能家居系统框架将当前智能家居的最新技术和移动互联网技术相结合,目的是让家庭设备连接起来,使得使用者能够更方便地控制家庭设备。

现有智能家居设备主要有以下几个类别:照明设备、温控设备和家用电器。针对照明设备,只需要在设备连接电源处设计一个转接头。转接头包含无线通信模块,能够接收来自中控服务器的控制信号,调整电流大小,达到控制照明设备开关、光照强度等功能;同时可以发送当前设备的基本数据到中控服务器。

智慧农业

为了能够实现对所有家居设备的自动控制,中控服务器需要对不同类型的智能家居设备进行建模。但是模型的参数需要同时考虑到不同设备之间的影响。比如,控制灯光亮度的模型需要考虑到天气、环境、外界光照强度的综合影响。如果是晴朗的夏天,为了降温,空调制冷需要开启。同时为了省电,窗帘会被拉上。因此,灯控的模型需要综合考虑到这些情况,在白天且窗帘被拉上的时候打开灯光。

如何构建一体化智能家居系统

关键技术三:同时同频全双工

综上所述,一体化智能家居系统能够通过简单的改动,如在现有设备上增加插件的方式将这些非智能设备接入智能家居中控系统中。同时,用户可以通过移动端应用或者Web应用访问中控服务器,对智能家居环境进行调控。并且中控服务器可以通过和用户试用的移动设备进行信息交互,获取用户当前信息。在获取了用户、智能家居设备以及周围环境的信息后,该系统还具备一定的学习能力,通过机器学习的算法,针对用户行为特征、环境、设备参数设计一套模型。在一体化智能家居系统的支撑下,智能家居应用将变得更加方便、易用,大幅提升人们的体验,为智能家居的普及奠定坚实的基础。

智能家居的美好愿景正在吸引家电厂商、设备厂商、软件厂商、互联网企业等各方角逐其中。在各家竞相推出智能家居产品和解决方案的今天,人们也发现了一个事实——虽然智能家居是不可阻挡的趋势,但是智能家居的技术仍然不够完善,智能家居系统亟待一体化。对于整个业界而言,只有让智能家居产品更加丰富,同时尽快统一标准,实现设备之间的互联互通,以及让智能家居系统具备“学习”能力,才有可能给用户带来更好的体验,从而推动整个市场的发展。

eMMB——增强移动带宽,保证大量数据传输

从结构上看,一体化智能家居系统需要一个中控服务器来负责连接所有家庭设备。设备可以通过有线或无线的方式连接到中控服务器。针对已装修好的室内,一般采用无线的方式比较便捷。为了尽可能多地覆盖市面上的产品,中控服务器支持包括WiFi、蓝牙以及ZigBee等主流的无线传输协议。在设备端,由于大部分的家庭设备不存在无线传输模块,为了使设备能够便捷地连接到中控服务器,需要设计一套插件,可以方便地让设备接入中控,且能够被控制。与此同时,还需要定义出一套接口标准,以解决设备繁多、无法统一连接的问题。

对于一体化智能家居系统而言,用户行为数据的获取非常重要,这主要借助于手机传感器上的数据读取,再经过简单的加工处理,以实现用户行为的识别。一般情况下,主要涉及的传感器有:加速度传感器、陀螺仪、GPS。加速度传感器主要用于监测人体的行为变化,包括站、坐、走等基本行为。人们在使用、携带手机的时候难免会产生相应的位置变化。为了校准手机这种位置变化,需要采集手机上的陀螺仪数据。在有了加速度传感器和陀螺仪数据后,系统就可以计算出用户在室内的行为以及运动轨迹。比如,系统可以识别用户从厨房移动到了卧室并坐下这一系列行为。这样就可以让中控服务器关闭一些厨房设备,并开启卧室内的相应设备。户外的用户运动轨迹数据主要通过GPS进行监测,通过掌握用户每天的运动轨迹,系统能够估算出用户到家的时间,自动开启空调、电饭煲等智能设备。

图片 6

构建一体化智能家居系统需要解决几个关键问题:如何让现有设备连接控制系统,如何让系统变得更加“智能”,如何设计智能家居系统前端,如何实现个性化设计?

让现有设备接入控制系统,意味着需要针对现有的非智能设备设计一套插件,让设备能够被控制。同时,对智能设备需要定义一套接口标准,达到统一管理的目的。

那么,5G将会带来什么?

对于一体化智能家居系统而言,用户行为数据的获取非常重要,这主要借助于手机传感器上的数据读取,再经过简单的加工处理,以实现用户行为的识别。一般情况下,主要涉及的传感器有:加速度传感器、陀螺仪、GPS。加速度传感器主要用于监测人体的行为变化,包括站、坐、走等基本行为。人们在使用、携带手机的时候难免会产生相应的位置变化。为了校准手机这种位置变化,需要采集手机上的陀螺仪数据。在有了加速度传感器和陀螺仪数据后,系统就可以计算出用户在室内的行为以及运动轨迹。比如,系统可以识别用户从厨房移动到了卧室并坐下这一系列行为。这样就可以让中控服务器关闭一些厨房设备,并开启卧室内的相应设备。户外的用户运动轨迹数据主要通过GPS进行监测,通过掌握用户每天的运动轨迹,系统能够估算出用户到家的时间,自动开启空调、电饭煲等智能设备。

针对温控设备有两种改造方案,第一,修改温控设备的开关控制板,加入无线通信以及控制模块,可以对控制板上的功能进行控制。这种改造方案主要针对没有无线遥控器的中央空调。第二,针对一般的空调设备,可以设计一个带有红外的无线控制装置,对准需要控制的设备的红外发射口。针对家用电器,由于设备多样性及复杂性,简单加入一套插件并不能获得所有功能的控制权限,想要有效解决家用电器的网络接入问题,需要和产品生产厂家合作完成。

高频段在移动通信中的应用是未来的发展趋势,业界对此高度关注。足够量的可用带宽、小型化的天线和设备、较高的天线增益是高频段毫米波移动通信的主要优点,但也存在传输距离短、穿透和绕射能力差、容易受气候环境影响等缺点。射频器件、系统设计等方面的问题也有待进一步研究和解决。

智能家居系统的前端采用当前流行的B/S架构。除了传统的Web控制前端外,还加入了移动前端。为了适配iOS和Andriod两大系统,可以用当前流行的HTML5来设计App。HTML5的好处是一份代码可以用于两种不同的移动设备操作系统,但是有些iOS上独有的特性无法体现。由于中控服务器需要能够支持外网接入,而当前家庭的网络接入都是以动态IP分配来实现,动态分配的IP并不能有效作为对外的服务器IP。针对这样的情况,可以考虑试用当前比较流行的云虚拟机来作为中控服务器和移动设备的连接桥梁。目前,国内主流的云虚拟机提供商,如阿里云就能够提供价格合理的云虚拟机服务。

现有设备接入控制系统

社交网络

图片 7

智能家居概念早在上世纪90年代就有雏形出现,但是当时整个行业还处在蛮荒阶段,概念还在探索,产品定位很是模糊,同时技术支撑也不足。进入2000年后,智能家居发展有了一定起色,但是还是处在光有概念没有市场的阶段。直到近几年,伴随着移动互联网、无线传感器等技术的革新和产品化的深入,以及人们对科技化生活需求的增长,智能家居渐渐不再只是概念,越来越多的产品和应用开始落地,并且人们也在进一步探索如何让智能家居更加“智能”,拥有更优的使用体验,以期得到大规模的普及。

关键技术二:新型多天线传输

智慧农业需要海量的数据传输,如土壤温湿度数据、农作物生长数据、空气二氧化碳、氧气浓度数据等,5G有望实现大量的传感器数据传输,实时监测作物生长情况。

增强型移动带宽主要表现在网络容量的提升,支持不同的设备同时进行大量的数据传输,带宽增强也意味着传输速率增加。超大的网络吞吐量以及更快的速率使得用户能够获得更好的用户体验。该应用场景包括AR/vr、社交网络、远程教育培训、无线家庭娱乐等一些需要超高清视频数据传输的领域。

5G的关键技术

第三代移动通信系统

驱动汽车产业变革的关键技术——自动驾驶、远程控制等,需要安全、可靠、低延迟和高带宽的连接,这些连接特性在高速公路和密集城市中至关重要,只有5G才能满足这样严格的要求。

图片 8

多天线技术经历了从无源到有源,从二维到三维,从高阶MIMO到大规模阵列的发展,将有望实现频谱效率提升数十倍甚至更高,是目前5g技术重要的研究方向之一。

图片 9

智慧能源——馈线自动化系统对可再生能源具有特别重要的价值,需要超低时延的通信网络支撑。通过为能源供应商提供智能分布式馈线系统所需的专用网络切片,能够进行智能分析并实时响应异常信息,从而实现更快速准确的电网控制。

关键技术六:新型网络架构

D2D技术无需借助基站的帮助就能够实现通信终端之间的直接通信,拓展网络连接和接入方式。由于短距离直接通信,信道质量高,D2D能够实现较高的数据速率、较低的时延和较低的功耗;通过广泛分布的终端,能够改善覆盖,实现频谱资源的高效利用;支持更灵活的网络架构和连接方法,提升链路灵活性和网络可靠性。目前,D2D采用广播、组播和单播技术方案,未来将发展其增强技术,包括基于D2D的中继技术、多天线技术和联合编码技术等。

图片 10

图片 11

智慧城市涉及各个方面,包括智能电网、智慧楼宇、智能交通等,将变电站、电能表、楼宇安防、交通信号灯等设备数据传输至数据平台,实现海量设备的通信要求。

最近几年,同时同频全双工技术吸引了业界的注意力。利用该技术,在相同的频谱上,通信的收发双方同时发射和接收信号,与传统的TDD和FDD双工方式相比,从理论上可使空口频谱效率提高1倍。

从1G跨入2G的分水岭则是从模拟调制进入到数字调制,第二代移动通信具备高度的保密性,系统的容量也在增加,同时能够提高多种业务服务。但那个时代GSM的网速仅有9.6KB/s。

由于引入了有源天线阵列,基站侧可支持的协作天线数量将达到128根。此外,原来的2D天线阵列拓展成为3D天线阵列,形成新颖的3D-MIMO技术,支持多用户波束智能赋型,减少用户间干扰,结合高频段毫米波技术,将进一步改善无线信号覆盖性能。

自动驾驶

目前,LTE接入网采用网络扁平化架构,减小了系统时延,降低了建网成本和维护成本。未来5G可能采用C-RAN接入网架构。C-RAN是基于集中化处理、协作式无线电和实时云计算构架的绿色无线接入网构架。C-RAN的基本思想是通过充分利用低成本高速光传输网络,直接在远端天线和集中化的中心节点间传送无线信号,以构建覆盖上百个基站服务区域,甚至上百平方公里的无线接入系统。C-RAN架构适于采用协同技术,能够减小干扰,降低功耗,提升频谱效率,同时便于实现动态使用的智能化组网,集中处理有利于降低成本,便于维护,减少运营支出。目前的研究内容包括C-RAN的架构和功能,如集中控制、基带池RRU接口定义、基于C-RAN的更紧密协作,如基站簇、虚拟小区等。

监测高频段资源虽然目前较为丰富,但是仍需要进行科学规划,统筹兼顾,从而使宝贵的频谱资源得到最优配置。

远程医疗诊断

国际电信联盟发布了官方第3代移动通信标准IMT-2000(国际移动通信2000标准)。3G存在四种标准式,分别是Cdma2000,WCDMA,TD-SCDMA,WiMAX。

海量机器类通信主要体现在物联网领域。其实,物联网的设备很简单,需要传输的数据信息量也不大。海量的物联网设备数据传输是5G相对于前几代通信技术的一个全新的应用领域。应用场景大致分为以下几种:智慧农业(土地、农作物以及天气数据)、智慧城市(实体基础设施设备连接)、智能制造(机器人控制、零部件监测)、智能家居等,在这些应用场景中,我们可以看到5G变革性的影响。

5G的应用领域

智慧城市

uRLLC——超可靠、低时延,传输速度快、稳定可靠

无线家庭娱乐

智能家居

第五代移动电话行动通信标准,也称第五代移动通信技术,外语缩写:5G。也是4G之后的延伸。其峰值理论传输速度可达每秒数十Gb,这比4G网络的传输速度快数百倍。

移动通信传统工作频段主要集中在3GHz以下,这使得频谱资源十分拥挤,而在高频段(如毫米波、厘米波频段)可用频谱资源丰富,能够有效缓解频谱资源紧张的现状,可以实现极高速短距离通信,支持5G容量和传输速率等方面的需求。

mMTC——海量机器类通信,大量设备接入,数据传输

图片 12

具备力反馈的远程医疗诊断需要低延迟的网络环境才能满足要求。像无线内窥镜和超声波这样的远程诊断依赖于设备终端和患者之间的交互作用。远程诊断是一类特别的应用,尤其依赖5G网络的低延迟和高QoS保障特性。

图片 13

前几代的通讯技术比较

据坊间爆料,7月30日,Nokia与T-Mobile US 签署了一份合作协议,涉资35亿美元(约折合人民币239亿元),这是截止目前所达成的全球移动通信行业里最大的一份5G订单。在这之前的2018年6月13日, 3GPP 5G NR标准 SA方案正式完成并发布,标志着首个真正完整意义的国际5G标准出炉,也标志着首个面向商用的5G标准出台。

3、进一步挖掘新的频率资源(如高频段、毫米波与可见光等),使未来无线移动通信的频率资源扩展4倍左右;

传统的蜂窝通信系统的组网方式是以基站为中心实现小区覆盖,而基站及中继站无法移动,其网络结构在灵活度上有一定的限制。随着无线多媒体业务不断增多,传统的以基站为中心的业务提供方式已无法满足海量用户在不同环境下的业务需求。

5G并不是独立的、全新的无线接入技术,而是对现有(包括2G、3G、4G和WiFi)的技术演进。依据5G的特点以及国际标准规划,将5G分为三大应用场景:eMMB(即enhanced Mobile BroadBand,增强型移动带宽)、mMTC(即Massive Machine Type Communication,海量机器类通信)和uRLLC(即Ultra-Reliable Low Latency Connection,超可靠低时延通信)

以上只是大概说明了当前5G的三大场景可应用的领域,但5G未来的潜力不只限于这些。随着时间的推移,还会出现更多的应用场景。在现阶段,只有eMMB完成了国际的标准制定,其余均处于标准商讨阶段,预计2019年底,实现5G标准的全面冻结。5G的发展支撑着物联网的发展,物联网的需求促进着5G技术的进步,如何将5G技术应用于更多的物联网领域,也许才是真正需要关注的重点。

图片 14

图片 15

无线家庭娱乐(如家庭监控,流媒体和云游戏)同样受益于5G。带宽越高,视频流质量越好,5G有望提供响应式和沉浸式的4K游戏体验,使大部分家庭的数据速率高于75 Mbps,延迟低于10毫秒。

关键技术四:D2D

关键技术一:高频段传输

与此同时,愈发密集的网络部署也使得网络拓扑更加复杂,小区间干扰已经成为制约系统容量增长的主要因素,极大地降低了网络能效。干扰消除、小区快速发现、密集小区间协作、基于终端能力提升的移动性增强方案等,都是目前密集网络方面的研究热点。

目前研究人员正在针对大规模天线信道测量与建模、阵列设计与校准、导频信道、码本及反馈机制等问题进行研究,未来将支持更多的用户空分多址,显著降低发射功率,实现绿色节能,提升覆盖能力。

AR/VR

智能家居将电视、音箱、冰箱以及窗帘等家庭智能硬件进行数据传输,通过智能家居的控制中心和枢纽,实现家庭硬件设备智能化。

移动视频业务不断发展,一些领先的社交网络推出直播视频。为了保证实时的互动性,1对多的用户交流,需要超大带宽以及超高速进行视频数据传输,流媒体录像设备从手机摄像头发展到了360°全景直播。

第一代移动通信系统

在未来的5G通信中,无线通信网络正朝着网络多元化、宽带化、综合化、智能化的方向演进。随着各种智能终端的普及,数据流量将出现井喷式的增长。未来数据业务将主要分布在室内和热点地区,这使得超密集网络成为实现未来5G的1000倍流量需求的主要手段之一。

第四代移动通信系统

本文由澳门凯旋门官网发布于互联网,转载请注明出处:真的来了,智能家居网络的建设能否引爆接入终

TAG标签:
Ctrl+D 将本页面保存为书签,全面了解最新资讯,方便快捷。